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Abstract. We consider the randoni-field ferromagnetic king chain, for a class of 
continuous synunetric probability distributions of the random magnetic fields, of a 
dilutedpower-timesexponential type. This class of distributions is 'exactly solvable', 
in the sense that the disorder can be integrated explicitly, at any temperature. A 
detailed analysis of the low-temperature themodynamiwis presented. Exact expres- 
sions are  obtainedfor the ground-state energy, the zero-temperature entropy, and the 
amplitude of the specific heat, WIG& vanishes linearly at low temperature. The di- 
luted symmetric binary distribution, where the magnetic fields can only assume the 
values + I I B  or aero, can be viewed as a limiting case 01 the clars uf exactly solvable 
distributions. The low-temperature physics of this discrete model is investigated in 
detail. including the exponential fall-off of the specific heat. These results are put in 
perspective with those of the 'exact solution', with emphasis on the crossover between 
various characteristic features of continuous and discrete field distributions. both at 
zero and finite temperature 

1. Introductioii 

This article reports on the continuation of our investigations of 'exactly solvable' 
classes of ferromagnetic king chains in the presence of quenched random magnetic 
fields [l-31. Random-field Ising models owe most of their interest to the combined 
effects of frustration and randomness. Recent and comprehensive overviews of these 
matters can be found in [4, 51, which deal in particular with the roughness of domain 
walls, the lower critical dimension, and dynamical aspects. 

The one-dimensional situation of random-field Ising chains is of physical inter- 
est, in spite of the absence of a phase transition at finite temperature. Indeed, the 
random-field king chain is a frustrated system, unlike the one-dimensional spin glass. 
As a conseqnence, there exist a large number of degenerate, or almost-degenerate, 
ground-states, so that the system exhibits a non-trivial low-temperature thermody- 
namics. Random-field Ising chains have been the subject of an abundant literature 
[6-131, which emphasizes the connection with products of 2 x 2 random matrices, and 
Lyapnnov exponents. Although the problem may look simple, i t  turns out that only a 
limited amount of exact information is available, concerning either thermodynamical 
quantities or correlation functions, for special classes of distributions of the random 
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fields. Let us mention in particular the followingstudies. The zero-temperature energy 
and entropy are known exactly for a general binary distribution [6]. The regime where 
the exchange coupling is much larger than the random fields has been investigated in 
[SI. The limit where the random fields are either zero or (plus or minus) infinity has 
been studied by an exact enumeration method [9], which we recall in the appendix. 

In previous publications [I-31, we have presented several examples of ‘exactly solv- 
able’ classes of random-field Ising chains. For these special distributions of the random 
mag-etic fie!ds-w!:ich are eaaentia!!y exponentia! functions-we hm-e she::.:: h ~ w  tG 
evaluate both the free energy and the (connected) two-point correlation function, a t  
any temperature. This approach, int,roduced by one of us, has been applied to a variety 
of linear and non-linear problems related to the physics of disordered one-dimensional 
systems [14-161. Its essential step consists in an exact integration over the random 
variables of the problem. Let us emphasize that the method used in [l-31, which yields 

and linear specific heat amplitude, is one of the very few approaches which permit a 
detailed analytical study of low-temperature thermodynamic properties. 

In the present work, we aim at extending the analytical approach of [l-31 to a 
more general class of ‘exactly solvable’ random-field Ising chains, where the probability 
distribution of the random magnetic fields h,  is defined as follows. We set 

J M Luck el a/ 

in particu!.r exact expressions for t.he ground-stat.? energy, zPro-t?mper.L.ure entropy, 

The positive parameter H is a measure of the strength of disorder, and the z,, are di- 
mensionless independent random variables, with the common symmetric power-times- 
exponential distribution 

lzl-le-ld 
R(z )  = - + r6(z) 2 (U- l)!  

The parameter U 2 1 is an arbitrary integer. The model is diluted, in the sense 
that only a fraction p of the spins experience a non-zero magnetic field. p can thus 
be referred to as the impurity concentration. The notation r = 1 - p will be used 
throughout this work. 

The class of ‘exactly solvable’ symmetric field distributions just defined contains 
as particular cases the situations studied previously. In the case U = 1 of a pure 
exponential distribution, we have studied the thermodynamical properties [l], with 
emphasis on the low-temperature regime, and the connected two-point correlation 
function [2]. In the case U = 2, the thermodynamical properties have been considered 

One of the most interesting features of the distribution defined earlier is that 
it has a three-peak structure, for U 2 2, since its continuous part has maxima for 
z = *(U - l), i.e. h = *(v - 1)H. When the integer U is large, these maxima become 
sharper and sharper, so that we are left with the diluted symmetric binary distribution 

in i3j. 

17 
R(h) = [ 6 ( h  - H s )  + 6 ( h  + HB)j + rO(h) 2 

(1.3) 

in the U + 00 limit, keeping the following product constant 

H ,  = vH. (1.4) 
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The parameter HB will thus be referred to as the field strength of the binary model. 
The random-field king model, with the power-times-exponential distribution (1 .2) ,  

for arbitrary values of the integer v ,  has already been studied within the mean-field 
approximation, and the replica method [17]. 

The present article reports on a detailed analytical study of the thermodynamical 
properties for the class of distributions defined earlier, by means of an exact solution 
of the problem, the parameter U > 1 being an arbitrary integer. We aim at  putting 
a special emphasis on the low-temperature regime, and on the large-v crossover be- 
haviour to the binary limit (1.3). After having recalled some general formalism about 
the transfer-matrix method in section 2, we derive the exact solution of the model at 
finite temperature in section 3. The study of the low-temperature behaviour requires 
a more technical analysis, exposed in section 4, where we evaluate the ground-state 
energy, the zero-temperature entropy, and the amplitude of the specific heat, which is 
linear in temperature. Section 5 contains more explicit forms of our general results in 
several special cases of interest. The limiting case of the diluted binary distribution 
is investigated in section 6, as well as the large-v crossover from a continuous to a 
discrete distribution, a t  zero temperature. In the concluding section 7, we discuss 
the extension of this crossover behaviour to finite but low temperatures. Finally, the 
appendix presents the solution of the H + CO limit of the model, which has already 
been investigated in [Sj.  

2. General formalism 

The Hamiltonian of the ferromagnetic king chain in a random magnetic field reads as 

71 = - J U ~ U , , + ~  - h, U,,, 

n n 

The exchange constant J is a fixed positive quantity, whereas the local fields h,  are 
independent random variables, with a common symmetric (even) probability distri- 
bution R(h) dh. 

According to the well-known transfer-matrix approach, the partition function ZN 
at  temperature T = 1/p of a finite chain consisting of N sites, with periodic boundary 
conditions, reads 

As a consequence, the quenched free energy F per site is simply related to the Lya- 
punov exponent of the infinite matrix product, namely 

hJ '. - P F =  Iim -1ntrn.. 1 
N - m  N 

n = l  

In order to evaluate this quantity, and following e.g. [l-31, we introduce a sequence 
of vectors (z,,yn) such that (z,,y,) is the image of ( ~ " - ~ , y " - ~ )  by the matrix T,,, 
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and we consider the ratios (Riccati variables) pn = x,/y,,. These quantities obey the 
recursion formula 

J M Luck e l  a1 

When the site label n becomes large, the distribution of the positive random 
variable pn converges to a stationary limit distribution, which is invariant under the 
transform (2.4). The existence of this stationary distribution is essentially equivalent 
to Oseledec’s theorem on products of random matrices (see [18] for an overview of 
rigorous results on this subject). 

We will denote averages with respct to this invariant distribution by ((. . .)}. In 
particular the free energy itself is given by such an average, namely 

- PF = -PJ + ((ln(p, + eZPJ))). (2.5) 

It will turn out to be convenient t o  rewrite the basic formulae (2.4) and ( 2 . 5 )  using 
different choices of variables. For the sake of consistency with [l-31, we introduce the 
parameters U), A ,  p and yo. These dimensionless quantities are defined as follows 

w = [ 2 ~ i n h ( 2 P J ) ] ” ~  

e-’’’ = t anh (PJ )  

X = 2 P H  

yo = - J / H .  

We perform first the change of variable 

In terms of the V,, the recursion (2.4) takes the form 

w2e2Bh,-t 

v,l = ,PJ (1  + e2Phn-1) - vn-l 

and the free energy can be expressed as 

- OF = -PJ  + ((ln [e2PJ + ePJ-2Phm (ePJ - v,,)])) (2.9) 

where ((. . .)) denotes a n  average with respect to the stationary distribution of the 
random variables V,, , 

We will also use the following second change of variables 

1 - Pn Z” = -. 
1 + P“ 

In terms of these new variables, the recursion formula (2.4) reads 

(2.10) 

(2.11) 
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with the notation 

t ,  = tanh(ph,) 

and the free energy is given by 

- PF = ln(2 cosh P J )  + (( In :c,-;"zn )) 

4159 

(2.12) 

(2.13) 

where ((.. .)) now denotes an average with respect to the stationary distribution of the 
random variables Z,. 

The general formalism recalled earlier will he used in the following, in the study 
of the random-field Ising chain with the 'exactly solvable' class of distributions (1.2) 
of the random fields in sections 3 to 5, and with the diluted binary distribution (1.3) 
in section 6. 

3. Exact  solut ion a t  finite temperature 

This section is devoted to an exact evaluation of the quenched free energy F ,  at  any 
finite inverse temperature @, when the probability density R(h)  of the random fields 
assumes the power-times-exponential form (1.2), with an arbitrary value of the integer 
parameter U. As explained in the introduction, this class of 'exactly solvable' distri- 
butions generalizes those considered in our previous works [l-31, which correspond to 
U = 1 and U = 2. 

Our analysis will follow the lines of [l-31, starting from equations (2.8) and (2.9). 
A convenient way of dealing with the invariant distribution of the random variables 
V,, is to consider its logarithmic transform 

E(Y) = ((WL - Y))) (3.1) 

as an analytic function of the variable y,  in the plane cut along the positive real 
axis, since the support of the invariant distribution can be shown to be the interval 

It follows from the recursion formula (2.8) that E(y)  obeys the following functional 
I = [o ,w*e-PJ] .  

equation 

E(y) = Iny + PF + E eDJ (1 + eZoh") - $ezDh"]) ( 1  
where (. . .) denotes an averaging with respect to the distribution R(h,) of the random 
field a t  site n. Notice that the free energy, which shows up as a constant term in the 
functional equation (3.2), can be expressed in terms of E(y) itself, using equation 

With the probability distribution (1.2) of the random magnetic fields, equation 
(2.9). 

(3.2) can be rewritten as 

E(Y) = In y + PF + pE,(y) + ~ E ( U I )  (3.3) 
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where E, is one of the following functions, defined for any integer m 2 1 by 

J M Luck et al  

E,(Y) = f [ E ~ ) ( Y )  + E ~ ) ( Y ) ]  

(3.4) 

and where 

(3.5) 
W 2  W2 - ZePJ - - +(z,g) = ePJ (1 + eAz) - -eAz 

Y Y 1 -  

with the notation of equation (2.6). The function 4(z, y) obeys the identity 

Equation (3.6) enables one to show, by means of one integration by parts, that the 
functions E c ) ( y )  obey the following first-order differential equations 

f L E::)(y) = E z ) ( y )  - E;Jl(y) 

where L denotes the differential operator 

L = N Y ) ~ ,  

and with the convention that E,?)(y) = E(y l )  i f m  = 0, where y1 has been defined in 
equation (3.5). 

Using equation (3.8) repeatedly, we can prove the following relations 

(1 - L)*E?,+)(y) = (1 + L)”’EL)(y) = E(y1) 

2(1-LZ)“‘E,(y) = [ ( l - L ) m + ( l + L ) m ] E ( ~ l ) .  (3.10) 

This last identity can be used t o  recast the central equation (3.3) in the form 

( I - L Z ) ” ( E ( y ) - ~ E ( y I ) - I n y ]  = P F + ; [ ( 1  t L ) ” + ( l - L ) Y ] E ( ~ l ) .  (3.11) 

We now perform the following change of functions and of variable 

E ( y ) = G ( r ) - l n ( 1  -zeZP) E,(y)=g, (z ) - ln(1-z)  

w - ye-’ 
w - yep 

z =  (3.12) 



Low-temperature lhermodynamics of random-field Isiny chains 4161 

This manipulation turns out to be quite advantageous. Notice for instance that y, is 
mapped onto z1 = ze-2p. Equation (3.11) becomes then 

(1 - L')" [G(z) - rG(re-'') - pln(1 - z)] 

= PFR + [ (1+ L)" + (1 - L)"] [G(ze-") - ln(1- z ) ]  (3.13) 

where FE denotes the 'random part' of the free energy, i.e. the difference between the 
free energy F and its value Fo for the pure king chain, in the absence of the random 
fields 

FR = F - Fo with pFo = - ln(2 cosh P J )  (3.14) 

and where the operator L now reads 

(3.15) 

I t  can be checked, using the changes of variables introduced in section 2, that the 
function G(z) is, apart from an irrelevant additive constant, nothing else than the 
logarithmic transform of the stationary distribution of the variables Z,, introduced in 
equation (2.10), namely 

x 
2 

L = -(1- .'))a,. 

G(z) - G(0) = ((ln(1 - zz,,))). (3.16) 

I t  is evident from the recursion (2.11) that the 2, have absolute values bounded 
by unity. Moreover, since Z,, is an odd function of all the random magnetic fields 

of the random fields. We can therefore complete equation (3.13), in analogy with [l-31, 
by the requirement that the function G(z) be even in z ,  and analytic in the z-plane 
cut along the real awis from -cu to -1, and from +1 to +oo. 

If we expand the function G ( z )  as a power series in z ,  equation (3.13) yields a 
(2u + 1)-term recursion relation for the coefficients of this Taylor expansion, which 
dekmines  them in a JJnique wq, once b o u d z i y  conditions hzve heen t z k n  czre of 
in an  appropriate way. 

Owing to the complexity of the recursion relation just mentioned, we prefer to 
split i t  into several coupled simpler equations. To do so, we also introduce the Taylor 
expansions of the functions g, (z )  defined in equation (3.12), for 1 < ni < U. More 
precisely, for the sake of further convenience, we set 

G ( z ) = G ( O ) -  Ci- Sm(z) = S m ( O ) -  d m , k k  (3.17) 

where the sums only involve even values of the index k ,  because of the evenness of the 
functions considered. As a consequence of the property (3.16), we have 

1. 1. +ha: ".,"- :.r.rt ,4:e+41...+:-m ,.C&l." 7 -L "_-" il. -$*L- >:-&-:L..+:-- s.1, .  . .,"*, lllr I l l " O l l * l , U  l l l " Y l l " " l l Y l l  "I u11c 0" UIL*IciD Y 1 1 S  ~ " ~ ' 1 L I T ; U U  YL UIC:  "llllll""Lil"ll 

Zk Z k  

k 
k ( e v m ) >  2 k (even)2 2 

ck = ((',")). (3.18) 

In terms of the functions G ( z )  and y,(t), equation (3 .3)  assumes the form 

G ( t )  = @FR + p g , ( z )  + rG(ze-"). (3.19) 



( I  - 2) + A 2  

4 
Pg&) = -- 

By inserting the expansions (3.17) into equation (3.20), we are left after some 
algebraic manipulations with v coupled three-term recursion relations of the form 

gm(2) - ’gm-l(Z) + gm-2(2) (3 < m < v) 
gz(r) - 2g1(z) + G(re-’”) ( m =  2) . (3.20) 

gl(r)  - G(ze-”) (m = 1) 

(3.22) 

together with the boundary conditions 

lim dm,k = 0 ( 1  < m < v). (3.23) 
k-m dm,o = 1 

Equation (3.19) is equivalent to the constraint 

whereas the quenched free energy of the model can be simply expressed as 

A2 ” 
PFR = -P- x ( v  + 1 - m)(l - dm,2). 

m = l  4 

(3.24) 

(3.25) 

The formulae (3.21)-(3.25) represent an exact solution of the problem, in the usual 
sense that the crucial step of integrating over the random fields has been performed 
exactly in an analytical way. These results generalize our previous works [l-31 to 
the class of distributions (1.2) of the random magnetic fields, where the power which 
multiplies the exponential is an arbitrary integer v. For v = 1 and v = 2, the 
expressions derived in [l-31 are recovered. 

Equations (3.21)-(3.24) can be solved numerically, and thus yield essentially exact 
values of the free energy, and thermodynamic functions, as long as the temperature 
is moderate. The numerical treatment of this exact solution consists in the following 
two steps. 

(i) Determine an arbitrary hasis of v independent solutions d t : k  (1  < a < v )  of 
the linear recursion equations (3.21)-(3.24) which go to zero for large I C ,  according 
to the second of the boundary conditions (3.23). It can indeed be checked that this 
is always possible, and that these solutions fall off proportionally to k-’IA.  From a 
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practical viewpoint, one imposes that the solutions vanish identically for k > k,,,, 
where k,,, is some large cutoff. 

(ii) Determine the coefficients N(a l  of the linear combination 

(3.26) 

in such a way that d,,,,,, = i, for i < m < v ,  according to the first of the boundary 
conditions (3.23). These are Y linear equations for U unknown quantities, so that 
the problem has a unique solution, provided the linear system under consideration is 
regular: this is always the case for real positive temperatures. 

At low temperatures, the number of terms in expansions (3.17), which are nec- 
essary to get a reasonably accurate result, diverges as k,,, - exp(2flJ), so that a 
qualitatively different analysis is needed. This is the main subject of sections 4 and 5. 

4. L o w - t e m p e r a t u r e  behaviour: teclinicalities 

In this section, we analyse in detail the low-temperature behaviour of the free energy of 
the random-field king chain, with the distribution (1.2) of the random fields, starting 
from the finitetemperature exact solution derived in section 3. This analysis follows 
the lines of our previous works [l-31. 

4.1. General approach 

At low temperature, the sequences C, and d, , introduced in section 3 have their 
relevant variations for typical values of the index k of the order of exp(2flJ). We are 
thus led to introduce the continuous scaled variable 

1 1 
y = -In A (Zkp)  = yo + ln(2k) (4.1) 

where yc and A have been introduced in equation (2.6). The last equality of equation 
(4.1) is valid up to exponentially small terms in temperature, of order exp(-4&I), 
which will be neglected throughout the following analysis. 

The key idea of the approach is that the difference equations (3.21) and (3.22) can 
be replaced by coupled differential equations for unknown functions C(y) and d,(y), 
defined as being the scaled low-temperature limits of the sequences C, and dm,, under 
the change of variable (4.1). By expanding equation (3.21) for large k ,  one realizes that 
the left-hand side of that equation is asymptotically equal to d;, where the accents 
denote differentiations with respect to the variable y. This estimate holds up to terms 
of relative order l / k ,  indicating thus that special care will have to be taken in doing 
the matching a t  y = yo with the solution of the difference equations (3.21) for large 
but finite values of the index k .  

This procedure leads to v coupled second-order differential equations, namely 

d;(y) = d,,,(y) - 2dn,-,(y) + dm-,(y) (3  < m < U )  
d;'(Y) = d,(Y) - 2d,(Y) + [1 - 4 Y ) l  U Y )  (4.2) 

d;'(y) = d,(y) - u(Y)I dv(y) 
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where the function u(y) is defined as 

J M Luck el a l  

(4.3) 

In the low-temperature limit, we have u(y) zs f?(-y) and u(y) zs B(y), where 
O(y) denotes Heaviside's step function, equal to 1 (respectively 0) when y is positive 
(respectively negative). This holds true except in a small region of size 1 / X  around 
the origin y = 0, which will play an essential role in the analysis. 

The technical development which follows has been split into four points, for the 
sake of clarity. 

4.1.1. Solution for y > 0. In this case, we can replace the function u(y) by unity in 

easily solved by recursion over increasing values of m, starting with the equation for 
d , .  We thus obtain 

the right-hazd side of the diRe:entia! eq"e?ions (4.2). These e q - a t i m  a x  then .very 

where the P, (1 < n < U )  are U integration constants, which depend a priori on 
temperature, and which so far remain unknown. 

4.f .Z.  Solution for yo < y < 0. In this second domain, the function u(y) is to be 
replaced by zero in the right-hand side of equation (4.2). The system of differential 
equations thus obtained is iess easy to soive than in the previous case. if we forget ior 
a while about the boundary conditions, the set of solutions to that system is clearly a 
linear space with dimension 2u. 

Let us look for elementary solutions of the system (4.2) such that 

d:(y) = w*d,,(y). (4.5) 

A basis of such functions asumes  the form 

d,(y) = b,e"'Y (4.6) 

where w is determined up to a sign. We obtain after some algebra 

b, = (1 + w)-" + (1  - w)-" (4.7) 

and we find that  w has to obey the consistency equation 

( l + w ) - ~ + ( l - w ) - "  = 2 .  (4.8) 

Equation (4.8), which can be recast as 

(1  - L I Z ) "  - f [(l +w)"  + ( 1  -.)"I = --WZ@"(W2) = 0 (4.9) 

is therefore the characteristic (or secular) equation of the problem. is a polynomial 
of degree U- 1 in its argument w 2 .  Hence it has exactly 2(u-  1) complex zeros, denoted 
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by fw, (1  < a < U - 1) in the following. For the sake of definiteness, we denote by 
wa the (U - 1) roots of equation (4.9) with positive real pads. We will comment on 
the occurrence of these complex roots in the discussion, and put them in perspective 
with the results of [ I ,  81. 

The first non-trivial case is v = 2, where we have @,(wZ) = 3 - w z ,  so that the 
unique characteristic value reads w1 = 4: this number plays an important part in 
the solution presented in [3]. The next few polynomials read a3(w2) = 6 - 3w2 + w4, 
a4(wZ) = 10 - 5w2 + 4w4 - w 6 ,  and so on. The behaviour of the roots wa for large U 
will be discussed in full detail in the beginning of section 6.2. 

We have thus found 2(v - 1) linearly independent solutions to the system (4.2), 
obtained by setting either w = wa or w = -w,, in equations (4.6) and (4.7). The last 
two solutions, which read d,(y) = 1 and d,,,(y) = y, independently of m, correspond 
formally to the double root w = 0 of equation (4.9). 

As a consequence of this discussion, the solution of the system (4.2) in the interval 
yo < y < 0 reads 

(4.10) 

with 

ba, ,  = (1 + w.)-” + (1 - w.)-” (4.11) 

we have thus in particular ba,+ = 2. A ,  B and the Ea, Fa (1 < a < v - 1) are ZU 
(temperature-dependent) constants yet to be determined. 

4.1 .3 .  Matching a t  y = yo. The aim of this third point is to study in more detail 
,how the solution (4.10), obtained by going from the integer index k to the continuous 

scaled variable y, matches for y +yo with the solution of the full difference equations 
(3.21) and (3.22), for values of k in the range 1 < k < l/p. 

One powerful way of dealing with this question consists in solving directly equation 
(3.13) for p = 0. Under this condition, equation (3.13) looses its non-local functional 
character, and becomes an ordinary differential equation of the form 

L [C(z) - In(1 - r ) ]  = P F J p  (4.12) 

where the differential operator L reads 

L = ( I  - LZ)” - + [ ( 1 +  L)” + (1  - L)Y] = -L2@,(L2). (4.13) 

In order to solve equation (4.12), i t  is advantageous to introduce the linearizing variable 

1 l + r  t = -In- x 1 - 2  
(4.14) 

in terms of which we have simply 

L = a,. (4.15) 

Equation (4.12) is therefore very easily solved. The general solution of the associated 
homogeneous equation is an arbitrary linear combination of the functions 1, t and 
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exp(fw,t) (1 < a < Y - I). Moreover, we notice that a particular solution of the 
inhomogeneousequation (4.12) reads G,(z) = -PFRtZ/ [~Y(u + I)], since the constant 
coefficient of the polynomial is equal to U(Y + 1)/2. 

Going back to the z variable, and imposing the requirement, discussed below 
equation (3.16), that G(z) be a n  even function, we are left with the following expression 
for G(z) in the p = 0 limit 

(4.16) 

Here and throughout the following, yE k! 0.57721 denotes Euler's constant. This 
large-k behaviour must match the expression (4.10) for m = U, since C, and du,k 
coincide, up to  exponentially small terms, by virtue of equation (3.24). By expressing 
this matching, we obtain the following conditions between the constants which enter 
equation (4.10) 

and we can rewrite the free energy of the model as 

(4.20) 

4.1.4. Matching a1 y = 0. A systematic and convenient way of dealing with the solu- 
tion of the system (4.2) for y close to the origin is to make use of Laplace transforms, 
in anaiogy with our previous works. T e  define the iapiace transforms O,(Z) of the 
functions d,(y) by 

ezyd,(y) dy (Re z < 1) (4.21) 

and the Laplace transform of the function u(y) defined in equation (4.3) in a slightly 
different way 

U ( z )  = /twe-zyu(y) dy (0 < Re z < A).  (4.22) 
-m 
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An elementary calculation yields 

1 
u ( f )  = ;r (1 - f) f (I) with f(~) = p x r " - l n 3 .  (4.23) 

n) l  

Notice that the  function f(s) is analytic in the whole complex s-plane. We also 
need the Laplace transform of the second derivative of the d,(y),  for which a direct 
evaluation yields 

ezydL(y) dy = z2D,(z) + Sm(z) r (4.24) 

where S,,,(z) represents the boundary terms, which can he  evaluated by means of 
equation (4.10), namely 

s m ( 2 )  =ezyo [zdm(~o)  - dA(~o) l  

- - eaYO - A  - b,,,w, (E,eWaYo - F e -"*Yo)  

"-1  

+ z Ay,, + B + ba,m (E,e"*Yo + Fae--waYO { a=1 

The  system (4.2) is then equivalent to 

S,(z) = (1 - z2)Dm(z) - 2D,-l(z) + (3 < m < v )  

S ~ ( Z )  +A(z)  = ( 1  - z2)D2(2)  - 2D1(z) + D,(z) 

S,(z) - A(z) = ( 1  - z2)Dl(z)  - D,(Z) 

where 

(4.25) 

(4.26) 

tm 
= lo ezYu(y)d,(y) dy (0 < Re s < A;  Re(z  + s) < 1). (4.27) 

Our next purpose is toextract  from the system (4.26) expressions for the constants 
A ,  B, E, and Fa, in terms of the function A(z) only, since this last quantity will turn 
out to have a simpler low-temperature expansion. 

In order t o  evaluate A and B ,  we multiply the equation of (4.26) which involves 
S,,, by (U + 1 - ni) ,  we sum up the results, and we rearrange terms by means of the 
identity ~ ~ = l ( v +  1 - m)b,,, = 0, valid for any value of the root label a. We are left 
with the estimate 

A(z) = i v ( v  + 1) [(Ay, + B)z  -A]  e l Y o  + O(zz)  ( z  -, 0) (4.28) 

from which we can extract easily 

A(0) = - f v ( u +  I )A  A'(0) = i v ( u +  1)B. (4.29) 
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In order to evaluate the constants E, and Fa, we perform a similar manip- 
ulation on the system (4.26), namely we multiply the equation involving S,,, by 
[ (1+ 2)m-u- l  - (1 - z ) " - " - ~ ] ,  and we sum these equations successively for z = ua 
and for z = -ua. The condition O,(w:) = 0 allows the calculation to be simplified 
drastically, so that we are only left with 

(4.30) 

with the notation p, = ( 1  + w ~ ) - " - ~  - (1  -..)-"-I. 

(4.19) as 
The expressions (4.29) and (4.30) allow us to rewrite the conditions (4.18) and 

r(l + ua/A)A(-uJeu~yo = r(l - w,,/A)A(ua)e-uaYo 

A'(0) + (y,q/A - YO)A(O) = ~ U ( U  + 1) 

(4.31) 

(4.32) 

and to express the free energy as 

FR = - p H  A(0). (4.33) 

4.2.  Low-tempernlure ezpansion 

The purpose of this section is to show that the free energy F = F, + FR of the model 
admits an expansion in powers of temperature, of the form 

F = E,-& T- To T 2 / 2 +  .... (4.34) 

The physical meaning of these coefficients is the following. E, and S, are the zero- 
temperature (ground-state) energy and entropy, respectively, whereas ro is the ampli- 
tude of the linear low-temperature behaviour C ( T )  z r0T of the specific heat. In the 
following, one of our main goals will consist in evaluating the values of E,, So and r,. 

The expression (4.33) shows that i t  will be sufficient to know the low-temperature 
expansion of the function A(z).  This expansion can be evaluated as follows. 

We start by shifting the integration contour of equation (4.27) to the right of the 
pole a t  z + s = 1 ,  thus obtaining 

( O < R e s < X ;  R e ( z + s ) >  1). 

(4.35) 

In order to determine the residue R of the integrand at z + s = 1, we notice that,  as a 
consequence of equation (4.4), the Laplace transform D,(z )  has a polar part a t  z = 1, 
of the form 

This expression easily yields the value of R, namely 

(4.36) 

(4.37) 
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where the superscript (m) denotes an order of differentiation. 
It can be argued, along the lines of our previous studies (see [l-3]), that  the contour 

integral in the right-hand side of equation (4.35) is smaller than the residue R by at 
least a factor of T3 at  low temperature. The key observation is that D,( r )  decreases 
a t  least as I / t 2  for Re z large positive, i.e. comparable with A. As a consequence, the 
low-temperature expansion of A(z) coincides, including terms up to T2 (i.e. in 1/X2),  
with the expansion of the residue R itself. 

The followiug expansions of the derivatives of the function U ( z ) ,  up to and includ- 
ing terms proportional to 1/X2, will be useful in the following 

U ( Z )  = ; + S;(YE + 81) + -(Y; + n2/6 + 2yEs1 + 82) + 
2x2 

1 1  2 

(4.38) 

(-l)"! +.. .  ( m 2 2 )  
p t l  

U("(Z) = 

The parameters s1 and s2 depend only on the impurity concentration p ,  according to 

(4.39) 

These quantities vanish linearly in T = 1 - p for p close to unity. Their small-p 
behaviour can be obtained by replacing the sum in equation (4.39) by an integral. 
This leads us to the following logarithmic behaviour 

Sk % I lnpl  - ky,l Inpl"-' + . . . . (4.40) 

We have thus derived the low-temperature expansions, including terms up to or- 
der T 2 ,  of all the relevant quantities, except for the U constants P, (1 < m < .). 
The derivation of the low-temperature expansion of these quantities is indeed a more 
difficult task, which will now be presented in several steps. 

4.2.1. Zerolh order in T: the ground-state energy E,. We start the detailed presen- 
tation of the low-temperature analysis with the zeroth order in temperature, which 
yields the ground-state energy E,. We assume therefore that all the quantities under 
consideration have finite zero-temperature limits. 

To this leading order of approximation, equations (4.35), (4.37) and (4.38) lead to 

A(z) = (4.41) 
"-1 

(1 - 2p+1 
m=O 

where it is understood that the P, stand for their zero-temperature values. 
We choose to set, for the sake of further convenience, 

NoQ(2) A ( r )  = - 
( 1  - 2)" 

where Q is a normalized (monic) polynomial of degree Y - 1, of the form 

(4.42) 

(4.43) 
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and where No = (-l)”-lPu-l. This normalization constant will play no essential part 
in the following. 

J M Luck et a1 

The conditions (4.31) assume the form 

(1 + w,)Ye-w*’OQ(w,) = (1 - w,)”e”-uoQ(-wa) (1 < a < w - 1) (4.44) 
whereas equations (4.32) and (4.33) allow us to express the ground-state energy as 

The only non-trivial ingredient in this exact result for the ground-state energy is the. 
dimensionless quantity a,. In order to  evaluate i t ,  one has to find a polynomial Q of 
degree (w - l) ,  which obeys the conditions (4.44) and the normalization (4.43). We 
recall that  the w a  are the complex roots of the secular equation (4.9), with strictly 
positive real parts. 

Before going into more detail, we first derive analogous results concerning the 
zerotemperature entropy, and the specific heat amplitude. 

4.Z.B. First  order in T :  the zero-temperature entropy So. To this next order of 
approximation, equations (4.35), (4.37) and (4.38) lead to 

(4.46) 

where the coefficients P, themselves depend a priori  on temperature. 
As a consequence, the product (1 - z)”A(z) is a polynomial of degree w ,  and 

therefore contains U + I coefficients. Equation (4.46) expresses these coefficients in 
terms of the U quantities P, (1 < m < w). Hence we can conclude that equation 
(4.46) imposes one condition among those coefficients. 

If we choose to set, for the sake of convenience, 
s 

A(z) = - N(X) [(I - T z ) Q ( z )  - fR(z) ]  
(1 - 2 ) ”  

(4.47) 

where R is a polynomial of degree U ,  and N(X) an  inessential temperature-dependent 
iwiiiiaii‘auuu L U I I S ~ ~ ~ ,  LUCU uit. I - V ~ L U L ~ ~ U ~  cxpicaacu vy  cquauvu (4.48) k fii!fi!!ed, 
up to  and including terms of order I / X ,  if we require that R(r )  be of the form 

I^__ - , : . . - A : - -  - - - - A - . . &  Al.̂.. .I_̂  - - . . > : A : - -  L.. 

Y 

R(r)  = R,r” with R, = 1. (4.48) 
*“=l 

Notice that the definition (4.48) implies in particular that R(0) = 0. 
On the other hand, the conditions (4.31), expanded in an appropriate way, yield 

homogeneous equations for R(z) which are fully analogous to equation (4.44), namely 

( 1  + w,)”e-waYoR(w,) = (1  - w,)”eWe”R ( -WJ ( 1  < a < w - 1). (4.49) 

Finally, equatioiis (4.32) and (4.33) allow us to express the zero-temperature entropy 
as 

ai = - ” (4.50) H- sa = + I )  ( j’ a, with 
J + aoH Qo ’ 

Besides ao, which showed up already in the expression (4.45) of the ground-state 
energy, the evaluation of the zero-temperature entropy involves thus one new dimen- 
sionless quantity a], which is related to  both polynomials Q and R. 
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4.2.3. Second order  in T: the specific heat amplitude r0. To this order of approxima- 
tion, equat,ions (4.35, 37, 38) lead to 

(4.51) 

In analogy with the discussion below equation (4.46), we can conclude that equa- 
tion (4.51) now imposes two conditions on the function A(z).  Surprisingly enough, 
i t  turns out that these conditions can be met, up to and including the second order 
in 1/X, by the expression for A(z) given later, which only involves the polynomials 
Q(z) and R(r) introduced previously, wiihout any need for defining any new unknown 
polynomial. 

Indeed, if we choose to set 

YE 1 
A(2) = (1 - 2)" ( [l  - B z  x + (7: - -z)R(z)  x + ,S(z)} 

(4.52) 

then S(z)  has to be a polynomial of degree (U + 1) .  By expanding equation (4.31), 
i t  can be shown that S(z) obeys the very same homogeneous conditions as Q ( z )  and 
R ( t )  [see equations (4.44) and (4.49)]. One can therefore look for a solution in the 
form S ( z )  = aIrZQ(z) + a2R(r) .  The (temperatureindependent) coefficients aI and 
a2 can be determined by matching equations (4.51) and (4.52). 

After some algebra, we are left with the following final expression for the amplitude 
ro of the linear low-temperature specific heat 

This expression involves two ne3.v quantities, a2 and a3, defined by 

a 2 = ~ + Q v - z  ~ , = U + R , _ ~ .  (4.54) 

To summarize this section, we have derived exact analytical expressions for the 
ground-state energy, the zero-temperature entropy, and the amplitude of the linear 
low-temperature specific heat in terms of four non-trivial dimensionless parameters 
m0, a,, oi2 and a3 [see equations (4.45), (4.50), (4.53) and (4.54)]. The following 
sections will be devoted to more explicit expressions of the general results derived 
earlier, in several limiting cases, and other specific situations of interest. 

5 .  L o w - t e m p e r a t u r e  behaviour:  resu l t s  

This section presents a more detailed discussion of the general exact results derived in 
section 4, concerning the low-temperature behaviour of the random-field Ising chain, 
where the random magnetic fields have the power-times-exponential distribution (1.2). 
We will consider first the generic situation, and study then some limiting and other 
specific cases of physical interest. 
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5.1. T h e  generic situation 

We recall first the general expressions, derived in section 4, for the ground-state en- 
ergy Eo, the zerotemperature entropy So, and the amplitude ro of the linear low- 
temperature specific heat 

J M Lnck e t  al 

H 2  
(5.la) P 

2 J + a,H 
Eo = -J  - - Y ( V  + 1) 

(5.lb) 

These formulae involve four dimensionless quantities, denoted by a,, el, a2 and a3, 
which contain the whole non-triviality of our exact solution. These numbers are 
defined through 

in terms of some of the coefficients of two polynomials Q ( z )  and R ( z ) ,  of respective 
degrees (U - 1) and Y ,  defined in equations (4.43) and (4.48), and subjected to the 
conditions (4.44) and (4.49). 

More precisely, equations (4.44) and (4.49) can he recast in the following form 

Q m w T +  Qmwrza=O 
0<m(even)<v-1 I<m(odd)<u-l 

R,wr+ R,,,w~x,=O (5.3) 
2<m(even)<u I<m(odd)<u 

with the notation 

x a  = ~ 1 1 + - t ,  t ,  t ,  = (*)"exp(-2waJ/H) 1 + U ,  (5.4) 

Since the index o varies between 1 and (v - l ) ,  the system (5.3) consists of 2(v - 1) 
linear and homogeneous equations for the 2~ unknown coefficients Q, and R,. Since 
these quantities are also subjected to the conditions R, = Qv-l = 1 ,  they are thus 
determined entirely. The Q,, and R, can be expressed as ratios of determinants, 
which are generalizations of the famous van der Monde polynomials, for which we 
have unfortunately not found any appealing closed-form expression. 

The general structure of the solution is, nevertheless, revealed in a clear fashion: 
the parameters ao, al, a2 and a3 which enter the results (5.1) are complicated rational 
functions of all the zo.  Their dependence on the strength H of the random fields 
therefore involves, in a rational way, terms of the form exp(-2w, J / H ) .  The occurrence 
of these exponentials will be commented on in the discussion. 

5.2. T h e  first f e w  values  of U 

Let us now express our results in fully explicit form for the first few values of the 
integer U. 
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5.2.1. v = 1.  This case was solved for the first time in [l]. Within the present 
formalism, the problem looks simple, since the system (5.3) is just empty. The only 
non-vanishing coefficients are Qo = R, = 1, so that we are left with 

an = a1 = a2 = a3 = 1.  (5.5) 

By inserting these expressions into equation (5.1), with v = 1 ,  we recover easily the 
results of [l] and [Z]. 

5.2.2. U = 2. In this case, which was already solved in [3], there is only one charac- 
teristic value, w1 = &, as mentioned in section 4.1.2. The associated x-parameter 
reads 

(5.6) 
1+(2-&)2exp(--2& J I H )  - Z+&tanh(& J I H )  
1-(2-&.)2exp(-2& J / H ) -  &+2tanh(& J I H ) '  

x1  = 

The solution of the system (5.3) is then 

Qo = - x l h  R, = - h / x l  (5.7) 

so that we are left with 

( 5 . 8 )  
1 & a , = T  a 2 = 2 - x , &  a - 2 - - - .  

X l &  X I  2 1  

1 
an=2--  3- 

By inserting these expressions, together with v = 2, into equation (5.1), we reproduce 
the main results of [3]. 

5.2.9. v = 3. In this case, the characteristic values w e  are two complex conjugate 
numbers, namely w1,2  = 1.405256 lGf0.68901732i .  The solution of the system (5.3), 
which reads 

yields the following expressions 

(5.9) 

(5.10) 

These last equations illustrate the general structure of the outcome of our exact solu- 
tion, for a generic value of the integer U. 
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5.9. The small-H l imif  
The behaviour of Eo, So and ro in the regime where H < J, for a fixed value of the 
integer U, is simple to derive from the earlier formalism. 

Indeed, the quantities eY*!'O which enter the conditions (4.44) and (4.49) are ex- 
ponentially small in the ratio H / J  = -yo, since all the characteristic values wo have 
positive real parts. 

In a first step of the analysis, forgetting about exponentially small corrections, 
we can rewrite the conditions (4.44) and (4.49) as Q(w.) = R(w,) = 0.  The latter 
equations admit the simple factorized solution 

J M Luck e l  al 

"-1 

Q ( z )  = n ( z  - w.) R ( z )  = z&(z)  
0=1 

from which we can derive the following expressions 

(5.11) 

CYo = v - a, = 1 a2 = a3 = U - R (1) (5.12) 
with the definition 

"-1 

0,") = 4 (5.13) 

where n is any (positive or negative) integer. The quantities 0,") only depend on the 
integer U. Their large-u behaviour will be analysed in section 6.2. 

It turns out that the leading H -t 0 results (5.12) can be improved by means of 
a systematic perturbative expansion in powers of the variables t , ,  defined in equation 
(5.4). In terms of thesc quantities, equations (4.44) and (4.49) can be rcwrittcn in the 
simpler form 
Q(w,,) = t,Q(-w,,) R(w,)  = t,R(-w,) (1 < a < v - 1) .  (5.14) 
It is advantageous to describe the polynomials & ( z )  and R(z )  in terms of their complex 
roots, namely 

0=1 

"-1 "-1 

Qb) = n k - w , ,  - R ( z )  = ~ ( z - w .  - %) (5.15) 

where the shifts ca  and qa of the roots, with respect to the H = 0 limit (5.11), are 
assumed to go to zero with the field strength H.  These shifts can be derived, to first 
order in the t , ,  by inserting the form (5.15) into the conditions (5.14). We thus obtain 

0=l  0=1 

(5.16) 

These results allow us to obtain explicitly, again to first order in the parameters t o ,  
the corrections to the H = 0 expression (5.12), in the form 

U-1 "-1 

a2 = v - a(], - C O  a3 = U - ql, + cc.. (5.17) 

These leading correction terms are exponentially small in the field strength H,  for any 
fixed value of the integer parameter v.' The large-u regime, where the real parts of 
some of the w,, go to zero, will be studied in section 6.2. 

11=1 0=1 
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5.4. The large-H liniit 

The analysis of the asymptotic behaviour of our exact solution in the converse limiting 
situation H >> J is slightly more intricate. 

If the strength H of the random fields is strictly infinite, we have yo = - J / H  = 0, 
and the exponential factors in equations (4.44) and (4.49) can be forgotten. We start 
the analysis by noticing that, under these circumstances, the polynomials 

(5.18) (1 - 2)" - 1 R&) = (1 - 2)" Q&) = 2 

obey the conditions (4.44) and (4.49). The notations with a tilde are to remind us 
that these polynomials do not fulfil the various conditions required by the definitions 
(4.43) and (4.48). One has, for example, k(0) # 0. The main advantage of the 
polynomials defined in equation (5.18) consists in the following identities, which are 
simple consequences of the definition of the roots w o ,  and which will he used extensively 
hereafter 

= 2  1 1 
= -2w, + -  1 1 -_ 

S&.) Ow(-w.1 R&J R,(-w,) 

(5.19) 

The next step consists in consideriug equatious (4.44) and (4.49) for a small hut 
finite value of the ratio yo = - J / H ,  and in looking for solutions to these equations 
in the form of power series in y,. It turns out that a formal solution to this problem 
can he easily derived to all orders of perturbation theory in yo. Indeed, an explicit 
calculation of the first few terms of the yo expansion suggests that the generic terms 
sum up to the following scaling form 

It is then easy to determine the function Y ( z ) ,  by inserting the ansatz (5.20) into 
equations (4.44) and (4.49). Using the identities (5.19), we are left with the following 
simple form for the scaling function Y (2) 

(21)" 
Y ( + ) = e " s i n h r =  $ ( e * " - l ) = $ ~ -  

n! "21 
(5.21) 

The solutioiis (5.20) are only formal ones, since they involve arbitrarily large powers 
of the variable z ,  and are therefore not polynomials in z .  I t  can nevertheless be argued 
that equations (5.20) and (5.21) do provide the correct yo expansion of the solution, up 
to all orders, as long as the powers of z involved do not exceed the degrees of Q(z )  and 
R ( z ) ,  i.e. ( v -  1 )  aud v ,  respectively. In other words, the naive form of perturbation 
theory just exposed does not, predict the terms of order y,Ytl for the polynomials o ( z )  
and A(*), nor for the polynomials Q ( z )  and R ( z ) ,  which will he constructed as linear 
combinations of o ( z )  and R(z) .  
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I t  turns out that the terms of order y;+l for the polynomial Q ( z )  are needed, in 
order to derive the first non-trivial correction term in the large-H expansion of the 
ground-state energy E,. In order to determine these leading anomalous terms, we set 

(5.22) 

where it is assumed that the terms of the yo-expansion up to yo” are correctly predicted 
by equations (5.20) and (5.21). The coefficient of order y i t l ,  denoted by ~ ( z ) ,  is 
certainly different from the prediction of equations (5.20) and (5.21), which reads 
q,(z) = - ( Z z ) ” / ( v  + l)!, since the degree of & ( z )  is (v  - 1). A careful investigation 
of the expansion of equation (4.44) as a power series in yo, using the identities (5.19), 
shows that ~ ( z )  has to obey the following condition 

This equation can be solved by means of the last of the identities (5.19), which leads 
to the explicit solution 

(5.24) 

By inserting this expression into equation (5.22), we obtain a polynomial Q ( z ) ,  which 
is equal to Q ( z ) ,  up to a multiplicative constant. ‘Phis polynomial yields, via equations 
( 5 . 1 ~ )  and (5.2),  the following expansion of the ground-state energy for H J 

E,  = -puH - r J  - - 
( U +  I)! 

(5.25) 

The first two terms are in accord with the expected behaviour of the ground-state 
enerey of the Ising c.liain in a very strone diluted random field. Indeed, each spin which 
feels a non-zero field is aligned with it, thus bringing the contribution - (Ih, I) = -puH 
to E,. The nature of the leading corrections present in equation (5.25) will be discussed 
in section 6.2. 

The large-H behaviour of the zero-temperature entropy So and of the specific heat 
amplitude ro are actually simpler to analyse than the ground-state energy. Indeed, 
the results concerning So start to be non-trivial when considering the terms of order 
yo” in the expansion of the polynomials Q ( z )  and &). These terms are correctly 
predicted by the generic results (5.20) and (5.21). Our last task  consists in building 
the polynomials Q ( z )  and R ( z ) ,  with the proper normalizations and conventions of 
their definitions (4.43, 48), from B [ z )  and R ( z ) .  To do so, we set 

Q ( z )  = a!Q(.z) R(2) = Q ~ @ Z )  + % Q ( z )  (5.26) 

with unknown yo-dependent amplitudes a l ,  U * ,  and a3.  I t  can be checked that all the 
requirements about Q ( z )  and R ( z )  are met, to leading non-trivial order in yo, i.e. up 
to and including terms proportional to yo”, for the choice 

(-1)”(1- E )  

v + Yo = (-1)”(1- f )  a3 = (5.27) Q 1  = ( -1)”( l+ f )  
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with the notation 6 = 2“-’(-y,)’’/v!. These expressions allow us to evaluate a, from 
equation (5.2), and So from equation (5.16). We thus obtain 

so=”.[l-y!(F) 1 25 “ +...I 
2 

(5.28) 

As far as the specific heat is concerned, the leading behaviour of I‘, is generated by 
the terms proportional to yo”-’ in the polynomials & ( z )  and R(r) ,  which are correctly 
predicted by the generic perturbative results (5.20) and (5.21). After evaluating a2 
and 0 1 ~  according to equation (5.2), we are left with 

r -  - 8 J ( u  - 1)!( s +s:+7r2/6)(g)Y + (5.29) 

6. The diluted binary inodel 

It has  been mentioned already in the introduction that the ‘exactly solvable’ class of 
random-field king chains described so far contains the symmetric diluted binary model 
(1.3) as a limiting case, namely where the integer U goes to infinity, the strength H, 
of the random fields being normalized according to equation (1.4). In this section, our 
aim is twofold. We will first analyse, in section 6.1, the low-temperature behaviour 
of the binary model per se, i.e. without reference to the exact solution described in 
sections 3 to 5. We will then present, in section 6.2, a detailed comparison between 
both approaches. 

6.1. Low-temperature behaviour 

The present section is devoted to the low-temperature behaviour of the random-field 
king chain with the diluted binary distribution (1.3), namely 

We consider again the general formalism of section 2. At low temperatures, both 
the recursion relation (2.4) for the Riccati variables pn and the expression (2 .5)  for 
the free energy can be simplified, allowing an  explicit determination of the ground- 
state energy E,, of the zero-temperature entropy So, and of the amplitude of the 
specific heat, which falls off exponentially in the present case. As far as E, and S, are 
concerned, our approach is very close to that used, for example, in [6] in the study of 
very similar models. 

6.1.1. The ground-slate energy. We first evaluate the ground-state energy E, of the 
binary model. To do so, i t  is sufficient to study the asymptotic exponential growth of 
the Riccati variables p, as p -+ w. Along the lines of [6], we set 
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where it is understood that only the linear growth in p of the exponent is taken into 
account. It can be derived from equation (2.4) that the new random variables c, obey 
the recursion formula 

J M Luck el a1 

c,-~ 2 J + c, = h, + J 

- J < c , -~  < J + c, = h, + c , - ~ .  

c , , -~  < -J  + C, = h, - J 

When the site label n becomes large, the variables e, inherit from the p, the crucial 
property that they admit an asymptotic stationary probability distribution, which is 
therefore left invariant under the transformation (6.3).  Equation (2.5) implies that  
the ground-state energy can be expressed in terms of an average with respect to this 
invariant distribution, denoted by ((. . .)), namely 

i f c >  J 
i f c <  J 

E,  = -J  - Z((&(c))) with &(c)  = (i- 
and where the site label n has been dropped, for the sake of simplicity. 

We now proceed to the'actual determination of the invariant distribution of the 
cn, for the distribution (6.1) of the random magnetic fields h,. If all the fields h, 
are changed into their opposites, so are the c,. Hence their invariant distribution is 
even. Moreover, equation (6 .3)  shows that the difference between c and ?cJ has to be 
a multiple of H,. 

We are thus led to look for a discrete invariant distribution of the form 

c = f(J + H ,  - mH,) with probability z, (6.5) 

where the integer m varies in the range 0 < m < N + 1. Here and throughout the 
following, we will use the notation 

2 J / H B  = N - 1 + ( (6.6) 

with N integer, N 2 1, and 0 < ( < 1. 
The physical meaning of the integer N will become clearer in the following. Let 

us just notice that the first value N = 1 corresponds to HB > 25, under which 
condition the non-zero random fields are strong enough to align the spins along them, 
independently of their environment. 

The probabilities zn, are determined by requiring that the distribution (6.5) be 
invariant under the action of the transform (6.3). This condition is equivalent to the 
following coupled linear equations 

2z0 = d X O  + z N + l  + zl) 

22, = 2r(ro +E,,,+, +zl) +PZ, 

2z2 = p(zo + z N + l  + X I  + z3) + 2rz2 

22, = P(Z,,,-~ + x,,,+]) + 2rz,  

2xN+1 = pz,. 

(6.7) 
( 3  < m < N - 1) 

2 1 ,  = p 2 N - L  + 2rxN 
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This system can be easily solved, and yields 

( x , = N X  1 z1 = ( y  - N - 1) X 

+ 1 - m)X ( 2  < m < N) 

N t l  The normalization X of the probability weights is fixed by the condition 2 E,,,=, I,,, = 
1 ,  which yields 

x = p / [ 2 N ( N  + l)]. (6.9) 

According to equation (6.4), the ground-state energy E, can be expressed in terms 
of the I, as E, = - [ J  + 2HBzo + 2 ( N H B  - ~ J ) I ~ + ~ ] .  The results (6.8, 9) yield 
thus the following explicit closed-form formula for E, 

(6.10) 

The ground-state energy is thus a piecewise linear function of the field strcngth H , .  
We have E, = - p H ,  - rJ for N = 1, i.e. H ,  > 25, E, = - $ p H ,  - (1 - 4 p ) J  for 
N = 2 ,  i.e. J < H, < 2 5 ,  and so on. In particular, the result for N = 1 agrees with 
what is expected, in a regime where each spin with a non-zero random field is frozen in 
the direction of its magnetic field. It can be checked that E, is a continuous function 
of H,, but that i t  presents cusps, with discontinuous slopes, a t  the values of H ,  such 
that the integer N jumps, i.e. whenever the ratio 2 J / H B  is an integer. 

The behaviour of the ground-state euergy for a small strength of the random fields, 
which corresponds to large values of the integer N, deserves some special attention. 
With notation (G.G),  expression (6.10) of E, can be expanded for small H ,  as 

1 2 &[l---+-( l+E-E €1, H g  ) +  ... 
2J  

E o = - . -  (6.11) 

The term of relative order ( H B / J ) '  involves a function of F ,  meaning that this term 
exhibits a periodic oscillatory behaviour as a function of J I H , .  We shall return to 
this aspect in sect.ion 6.2 ,  in connection with the exact solution. 

6.1.2. The zero-teinperature entropy. In order to determine the zero-temperature 
entropy So of the model, along the lines of [ G I ,  we have to make the large-0 estimate 
( 6 . 2 )  of the Riccati variables more accurate, keeping track of prefactors. We therefore 
set 

P" - a, exp(2flcn). (6.12) 
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Equation (2.4) implies that the couple of random variables (c,,, a,) obeys the following 
recursion relation 

J M Luck e t  a1 

c , - ~  > J + c, = h, + J 

CY,- 1 = J * c, = h ,  + J 

- J < c , - ]  < J + c, = h,  + c , -~  

cnT1 = -J  j c, = h, - J 

c , - ~  < -J  e, = h,  - J 

c, = 1 

a, = an-]/(1 +a,,-]) 

a, = a,-l (6.13) 

a, = an-l + I 
a, = 1 .  

The couple (c,,, a,) is distributed, asymptotically for large n, according to a limit 
probability distribution, which is invariant under the transformation given in equation 
(6.13). By expanding expression (2 .5 )  of the free energy for large p in an appropriate 
way, the zerotemperature entropy So can be expressed as an average with respect to 
this invariant distribution, namely 

i f c >  J 

{ ra i f c <  J .  
So = ((bl(c,a))) with b l (c ,a )  = ln(a + 1) if c = J (6.14) 

In analogy with the calculation of the ground-state energy, presented in section 
6.1.1,  we now proceed to the explicit determination of the stationary distribution of 
the couple (c ,  a) .  The evenness of the distribution of the random fields implies that the 
values (c, a)  and ( -c ,  l/a) occur with equal weights. By inspection of the recursion 
(6.13), one realizes that the invariant probability distribution has the following discrete 
form 

{c = & ( J  + H ,  - mH,),  a = k?'}  with probability z ~ , ~  (6.15) 

with 0 < m < N + 1, as previously, and k > 1 can be an arbitrary integer. The 
probabilities z , , , ~  are determined by the requirement that the distribution (6.15) 
be invariant under the action of the transform (6.13). This condition provides the 
following system of coupled linear equations 

% , I  = P ( Z 0  + Z N t 1 )  

%,I = 2 r b o  + Z N t 1 )  + P Z Z , l  

2z2,1 = d Z O  + 23,1 + 'N+1) + 2Tz2,1 

2z0,t =PZl,k-l  ( k  > 2, 

221,k = 2TZ1,k-l +PZZ,k ( k  > 2) (6.16) 

2 2 2 , t  = P(zl,k-l + z 3 , t )  + 2r22,k 

2zm,k = d Z r n - l , k  + Zm+l,k) + 2rZm,t ( 3  < < - ') 

2xN,k = PxN-l,k + 2TzN,t 

2xN+l,k!= PzN,k 

( k  > 2 ,  
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where the quantities with one single subscript are as in section 6.1.1. 
The system (6.16) can also be solved in closed form, and yields 

x , , , ~  = NX pNr i - '  

2 k 

P 
2 
P 

x l l k  = -NX P N P N  

= -(N + 1 - m ) ~  pN+' (2 < m < N) 

2 " + 1 , k  = x pNT$'  
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(6.17) 

where the normalization X is still given by equation (6.9), and with the notation 

(6.18) 

According to equation (6.14), the zero-temperature entropy S,, can be expressed 
as 

(6.19) 

The solution (6.17) leads to an explicit expression for So, namely 

s,, = 2NZ P2 ri-' ~n k. (6.20) 
k > l  

The zero-temperature entropy depends on the strength H, of the fields only through 
the integer N. I t  is therefore a discontinuous function of the field strength HE. Unlike 
in the 'exactly solvable'model, the dependences of So on p and on H, do not factorize. 
Finally, S,, assumes non-trivial limits in the non-diluted case ( p  = l ) ,  for N > 2. We 
will comment some more about these matters i n  section 6.2, and in the discussion. 

Moreover, when the ratio ZJJH, is exactly an integer, the result (6.20) is not 
valid. Indeed, there are some extra degeneracies, so that the right-hand sides of the 
system (6.16) contain some additional terms. These points correspond to discontinu- 
ous 'spikes' in the dependency of the zero-temperature entropy on the field strength 
H,: when 2J/HE is exactly an integer, the value of So is larger than its limits from 
bot,h sides. Such a phenomenon was already underlined in [6], which contains the 
results (6.10) and (6.19) in the non-diluted case ( p  = 1) .  

6.1.3. The specific heal. We now want to investigate the low-temperature behaviour of 
the specific heat of the diluted binary model. To do so, we have to make the estimate 
(6.12) ofthe Riccati variables still more accurate, by keeping track of the exponentially 
small corrections to the leading behaviour (6.12). We set therefore 

p, = anezpCn (1 + b,e-2P5'* + . . .) . (6.21) 

Just as previously, by expanding equation (2.4) in an appropriate way, we can derive 
a recursion relation for the four random variables (cn, a , ,  gn,  b").  These formulae are 
rather lengthy, and will ],it be needed in the following in their full generality. 

Y 



4182 J M Lack e l  a1 

We give hereafter the transformation law for the leading correction exponent gn, 
which depends only on c,,-~ a n d  gn-l ,  according to 

(6.22) 

where the function Inf {z: 11) is defined as the smaller of its arguments. 
For n large enough, gn will assume the smallest positive value which is consistent 

with the recursion ( 6 . 2 2 ) .  I t  can be checked that this value, denoted in the following 
by j ,  reads 

j = Illf { G I ;  j 2 ]  

with 

2 J E  j ,  N H B  - 25 = 2 J ( 1  - E )  ( 6 . 2 3 )  
N - I + E '  

j ,  = 25 - ( N  - l ) H  - '- N - 1 + [  

This result shows explicitly that the position of the parameter E with respect to the 
special value 

The correction exponent j governs the low-temperature behaviour of the specific 
heat. I t  can indeed be shown that the free energy admits the following low-temperature 
expansion 

= 4 plays a special role in the problem. 

F = E, - So T - B T e-25JT + .  . .  (6.24) 

...L.-.. I,.^ , : L . . . L  6 .̂..._  ̂""-,I " ~ "" :&L _^^_^^L &n+l...",..:n.."-., 
W I I C L C  b,,G b"Lp"1uL'Yc U C b U  "c: "Ap'LCUUru aa DYl l l r i  arclagc "",U,, "0pCL.y Y U  Y l l r  " Y O Y 1 U " b L J  

joint distribution of the variables (c,,a,,g,, b" ) ,  restricted to g, = j .  
In other words, 2 j  represents the non-vanishing energy gap between the lowest 

elementary excitations and the ground-states. As a consequence of equation (6.24), 
the specific heat C(T)  has  the following exponential fall-off a t  low temperature 

r: - 4B($/T)2.-'"'T. $25) 

Figure 1 shows a plot of j ,  against the field strength H,, both in units of J .  It can 
be shown from its expression (6.23) that  j is a continuous and piecewise linear function 
of H , ,  which oscillates infinitely many times between both its extreme behaviours 
j = 0 and 3 = H , / 2 ,  reached respectively when the ratio 2 J / H ,  is integer, or half- 
integer. 

The explicit evaluation of the amplitude E involves lengthy calculations, which 
we prefer not to reproduce here, since the derivations follow closely those of sections 
6.1.1 and 6 .1 .2 ,  and do not present any qualitatively new kind of difficulty. It turns 
out that three generic cases have t o b e  dealt with separately. We just give below our 
final expressions for the amplitude B in each generic case. 

U 
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' 3 '  2 ' N = I  

Figure 1. Plot of the reduced exponent j / J ,  against the ratio H B l J ,  of the low- 
temperature behaviour (6.25) of the specific heat of the binary model. j oscillates 
infinitely many times between d = 0, when ZJ/HB is integer, and j = H B / 2  (shown 
as a dotted line), when ~ J / H B  is hall-integer. 

- ~ N + ~ + P N  
E =  

3 N 2 ( N  + 1 ) ' p ~  ' 

This amplitude diverges for small p as 

4(3N + 1) 
3 N ( N  + p 

Bz 

(6 .26)  

(6 .27)  

This striking property will be explained in more detail in the appendix, in terms of 
a non-trivial crossover phenomenon between the non-commuting p -+ 0 and T - 0 
limits. 

(ii) + < < 1,  i.e. 3 = i2 
2 - P3 I n P N  

B=* (7) (6 .28)  

The structure of this expression is very different from ( 6 . 2 6 ) .  In particular, in the 
present case, the amplitude vanishes rapidly for p -+ 0, as 

p3 In2 p Bz- 
4 N 3  (6 .29)  

(iii) H ,  > 4J ( N  = 1 and 0 < < < i) 
In this case, the lowest excitations consist in flipping clusters of consecutive spins 

which feel a zero magnetic field. Such a flip costs an energy 4 5 ,  in agreement with the 
expression j = 2 5 .  The  structure of the equations is slightly different from the generic 
ones. As a consequence, our final expression for the amplitude B is also somehow 
different, namely 

(6.30) 
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This last result, which shares with equation (6.26) the property of blowing up as l /p 
for small p ,  will be met again, via a different approach, in the appendix, devoted to 
the H, = 00 limit. 

The other case with N = 1, namely 4 < ( < 1, i.e. 2 J  < H, < 45 ,  is not different 
from the generic case (ii). 

When the ratio 4J/HB is an integer, namely when the variable( equals either zero 
or one half, the situation is again more complex, because of some extra degeneracies. 

J M Luck et a1 

1x1.. h..,- n-t a...l...l+n-l the o-nl:&..,l., I) PA. &l.,.-- . . -d : - . .Tm-  ""--- 
I..= ,I_"C L ' Y Y  T"',II"PUC" I1.C ',L"pL'YY"c " L V L  U I I S U C  pmL"cu,LLL Ca.,G:U. 

6.2. Connect ion with the exact solution 

In this section, we want to discuss the connection between the exact results obtained in 
sections 4 and 5, concerning the probability distribution (1.2) of the random magnetic 
fields, *with the :esu!t: =f sec t i~r .  5.1, concerning th- binary distribction (1.3). As 
mentioned already in the introduction, the diluted symmetric binary distribution is 
nothing but the v -+ 00 limit of the power-times-exponential distribution (1,2), the 
parameter H, of equation (1.4) being kept fixed. 

It can therefore be suspected that the results of our exact solutions exhibit an 
interesting crossover behaviour when the integer U is large. In this section, we will focus 

of the specific heat for the discussion. 
We start the large-v analysis of the results of sections 4 and 5 by an evaluation of 

the complex numbers wa, which have played a crucial part in the exact solution. We 
recall that these numbers are the v - 1 roots of equation (4.8), or (4.9), with strictly 
positive real parts. It turns out that three regimes have to be discussed separately. 

onr &t!ent.ion on z.ero-temperatlJre propertie., leaving the !ow-temper$tgre hehaylour 

(i j  For large v ,  and Re w > 0 fixed, (1  + w)-" is exponentially negligible with 
respect to (1 - w)-" .  We therefore obtain the estimate 

~ 1 - 2 - I / v e - 2 r i a / ~  (1 < a  < U -  1). (6.31) 

This result, which expresses that the roots are equally spaced on the circle centred at  
the point w = 1 with radius 2-'/" G 1, holds when both integers U and a are large 
and comparable, provided their ratio aJv does not approach the limiting values 0 or 
1. These limits, for which the real parts of the roots (6.31) go to zero, have to be dealt 
with in a different way. 

It turns out that the relative positions of the roots wu will not be altered with 
respect to (6.31). We will thus assume throughout the following that the roots U, go 
counter-clockwise around the point w = 1 when the label a runs from 1 to v - 1, and 
that wY- .  is the complex conjugate of wa, In particular, if v is an even integer, there 
exists one real root, namely w u l z .  

(ii) For large v ,  keeping a fixed, we look for a solution of the form wd % Z/v. 
Equation (4.8) can then be expanded as 

w. 

zz . 2 3  

2v 3 9  
cosh Z + -sinhZ + - cosh Z + . . . = 1. (6.32) 

Keeping only the leading order, we obtain Z = 27ria, where a is an arbitrary integer. 
The higher-order terms can be taken into account in asystematic way. We thus obtain 



Low-lenrperalure thermodynamics of random-field Ising chains 4185 

the following large-v behaviour of the first roots wa (1 < a << U) 

1 27ria 1 1  
wa = - 

U 

+ 2E [1+; 1 (T r2a2 - 1) + .  . .] 
"312 

(6.33) 

(iii) This last regime consists in the non-trivial crossover between (i) and (ii) which 
takes place for values of the index a such that a2 and U are comparable. The occurrence 
of such a crossover phenomenon is suggested by the form of the first correction term 
to the real part of wa in equation (6.33). We set, for the sake of convenience 

(6.34) 

where i t  is understood that a and U go to infinity, X and Y remaining finite. In this 
regime, equation (4.8) assumes the simpler form coshY = exp(X2/2), whence 

(6.35) 

Notice that the Y-variable is real: only the real part of the roots w,, is affected by the 
effect under consideration, to leading order in v1I2. When the scaling variable X is 
small, this solution behaves as Y sz X + X3/12, in accord with the expansion (6.33) 
of Re !n t,he mnverse !arge-X limit, we have y w X2!2 + I n  2; in agreement with 
equation (6.31), up to exponentially small corrections. 

We end up this discussion with a numerical illustration. Figure 2 shows a plot of 
the roots w a ,  and their opposites, in the complex w-plane, for U = 10 and U = 25. 
These plots are very close to being the circles predicted by equation (6.31). Indeed, 
crossover behaviour (iii) only sets in for very large values of U.  This can be realized 
by noticing that the first root (a = 1)  Is fully in the crossover regime ( X  sz 1) only for 
U - 40. Unfortunately, this very late convergence towards the true asymptotic large-u 
limit will be shared by most physical quantities. 

Im w 

f f .  
I 

, * ' ,  1 -1 I "..,,. '  I I I . .  

. .  . .  
1 .. 

-1 -1 0 1 2 
Rem 

Figure 2. Plot of the roots +W. (1 < a < Y - 1) of the secular equation (4.9), in 
the coriiplex w-plane, for v = 10 (stars), and Y = 25 (dots). 
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We are now able to go back to the small-H limit, considered in section 5.3. Our 
first aim consists in evaluating the sums and a(-,), defined in equation (5.13), 
which determine, via  equation (5.,12), the H -t 0 limit of all the low-temperature 
thermodynamical properties. To leading order for large v ,  these sums can be evaluated 
by means of equation (6.31). We thus obtain 

O(1) e " ii: v / 2 .  (6.36) 

The first correction to these asymptotic results originates in the crossover regime (iii) 
described earlier, i.e. in values of a, or of ( v - a ) ,  of order v l / ' .  By inserting the result 
(6.34) and (6.35) into the definition (5.13), subtracting the circular law (6.31) in an 
appropriate way, and finally converting the sums over the integer a into integrals over 
the continuous variable X ,  we obtain the following estimates 

(6.37) 

with 

A ( l ) = - k j + a d X  0 [ In( l+J1-exp(-XZ))  -In21 ~ ~ 0 . 1 1 9 8 9 9 8 6  

u o = 4 r 2 e x p ( - 2 1  +cc 3 d X  [ In( l+J1-exp(-X2))  - X C - ~ ] }  08.16675275 

(6.38) 

By inserting estimates (G.37) and (6.38) into equations (5.12) and (5.1), we are able 
to study how the small-HB behaviour of the thermodynamical quantities approaches, 
for large U, the results concerning the binary distribution, derived in section 6.1. 

Considering first the ground-state energy, the first explicit v-dependence shows up 
in the H i  terms, namely 

(6.39) 

The expression inside the parentheses exhibits a broad maximum around v = e2v0 o 
60, where it equals 0.0821, before it falls off very slowly to zero. 

As far as the specific heat amplitude ro is concerned, the estimate (6.37) implies 
the following behaviour, for H ,  small, and v large 

H 
U'/' (s2 + s t  + a2/6). (6.40) 

4 J 2  
ro FZ 

We will come back to this growth in v l I 2  in the discussion. 
We now want to address the more difficult question of the convergence of the low- 

temperature thermodynamical quantities, and especially of the ground-state energy 
Eo, for large U ,  towards their expressions in the binary limit, for arbitrary values of 
the sc,aled field strength H,. This study will in particular shed some light on the 
range of validity of the estimates (6.39, 40). 
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Let us start  by recasting the main result (6.10) concerning the binary model, within 
the formalism of the exact solution in the v + CO limit. To do so, we evaluate first the 
function C(y), defined in section 4.1 as the scaled low-temperature limit, under the 
change of variable (4.1), of the moments C,, defined in equations (3.17) and (3.18). 
Using the definitions (2.10), (3.18), (4.1) and (6.2), we obtain the estimate 

qY) i;: ((exp [-eZP(HY+J-lcml) 1)) ( Y > O , V + C O )  (6.41) 

where ((. . .)) denotes an average over the invariant distribution of the variables e,, 
studied in section 6.1. It is then natural to scale the variable y according to y = uY,  
and to rewrite equation (6.41) as 

C(UY)  i;: ((@(IC,, - J - H B Y ) ) )  (Y > 0). (6.42) 

The right-hand side of this last expression can be evaluated in closed form, using the 
invariant distribution (6.5). I t  turns out that  there are only two relevant values of the 
random variable Ic-1, namely lcnl = J + HB and IC,, = N H ,  - J ,  with respective 
probabilities 2x, and 2 x N + , ,  given by equations (6.8) and (6.9). We are thus left with 
the estimate 

[ N  q 1  - Y ) +  O(1-( - Y ) ]  (6.43) N(N + 1) 
C(uY) i;: 

where N and F have been defined in equation (6.6). Finally, using equations (4.27) and 
(4.42), we can derive from the estimate (6.43) the following large-v limit of the poly- 
nomial &(.), up to an irrelevant normalization factor, and with the variable rescaling 
2 = z/v 

(6.44) Q(Z /u )  i;: Q(Z) = - [N ( 1  -e-”) + e-(’ - e-”] 

This expression is indeed formally a polynomial of infinite degree, i.e. an entire func- 
tion. 

We can now estimate from the result (6.44) the largev behaviour of the parameter 
eo as 

1 
Z 

(v - CO). 

(6.45) 

and check that the resulting expression for the ground-state energy, obtained by in- 
serting the result (6.45) into equation (5.la),  coincides with equation (6.10), as it 
should. 

On the other hand, for large v and in terms of the scaled form Q(Z), the condition 
(4.44) to he fulfilled by the polynomial Q(z)  only involves the form (ii) of the roots 
w o ,  described earlier in this section, and given in equation (6.33). To leading order 
for large v ,  we obtain the condition 

~ ( 2 a i a )  = e2=i4c~(-2nia)  (a  2 1). (6.46) 

It is easy to check that the result (6.44) indeed obeys this identity. Surprisingly enough, 
the condition (6.46) does not ‘feel’ a t  all the dependency of the function Q(Z) given 
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in equation (6.44) on the essential integer parameter N .  In other words, Q(Z) is just 
one among the infinity of entire functions which obey equation (6.46) ; this special 
solution is not selected by the condition (6.46) alone, albeit by more global features 
of the problem. 

A natural way of dealing with the largeu behaviour of the exact solution, and of 
comparing its outcomes with those of the binary model, would consist in performing 
a perturbative analysis, and to look for an expansion of the polynomial Q ( z )  around 
the iimit expression (6.44j, which wouid hoid for iarge U. -We have not been abie to 
achieve this programme, seemingly because of the difficulties alluded to in the previous 
paragraph. 
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Figure 3. Sdiematic plot of the continuous part of the probability density (l.Z), 
for Y large, and magnetic fields h close to their average absolute value H g  = vH, 
illustrating tlie role of the two relevant energy scales UI and WO, defined in the text. 

We will, instead, present a heuristic approach, which provides a qualitative un- 
derstanding of the corrections to the binary limit (6.10) of the ground-state energy. 
The essence of tile argument is shown in figure 3. When the integer v is large? the 
probability distribution of the magnetic fields h, is sharply peaked around the value 
H ,  = u H .  From a more quantitative viewpoint, the (root-mean-square) width w of 
the continuous part of the probability distribution (1.2) reads 

wz = ( h 2 )  - (lh1)2 = v H 2  = H i / v .  (6.47) 

It is clear from figure 3 that the relevant energy scale, to which the width w of the 
disorder is to be compared, is given by the width WO of the interval determined by 
the adjacent special values 2 J / ( N  - 1) and 2 J / N  of the field strength H,, which 
have played a central part in the study of the binary model. We have thus WO = 
2 J / [ N ( N  - l)] 2 J / N Z  5 H i / ( Z J )  in the small-field limit. We are thus led to 
consider successively the following two regimes: (i) U << N Z  and (ii) U >> NZ.  

(i) U < N z ,  i.e. w > WO: This first regime sets in when the field strength H ,  is 
very small, a t  fixed U ,  namely HB < u-'lzJ. I t  thus encompasses the usual small- 
H limit, which has  been studied in section 5.3. Conversely, the field strength H ,  
being fixed, regime (i) corresponds to small values of U ,  for which the system is very 
sensitive to the difference between the power-times-exponential distribution, and the 
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binary one. Finally, (i) is paradoxically a large-disorder regime, since the width of 
disorder w is very large, compared with the interval width WO. 

The result (5.16) and (5.17) shows that the leading non-trivial term in the small-H 
behaviour of the ground-state energy is proportional to 

where the rightmost estimate has been obtained using the expansion (6.33) of the real 
and imaginary parts of the first root w l .  Roughly speaking, the contribution of the 
next root w2 scales as the square of the first one, and so on. 

The argument of the exponential function in the rightmost side of equation (6.48) 
can be recast as 2aN/u11z.  As a consequence, the condition v << N Z  which defines 
regrrire (1, can ais" ut: w u u g r ~ ~  01 as me conmuun U, vaiiuiiy 01 me smau-iieiu resubs  
derived in section 5.3, and of the estimates (6.39) and (6.40), which were based on 
those results. 

(ii) U >> N Z ,  i.e. w << WO: This second regime corresponds to large values of the 
integer parameter v, at  fixed field strength HB, so that the width w is very small, and 
that the power-times-exponential distribution (1.2) becomes hardly distinguishable 
from the syr.---et:ic binary one (1.3). P.F. far 'c the gronnd-state energy is concemed, 
two cases have to be discussed separately, namely N = 1 and N 2 2. 

For N = 1, i.e. H, > 25, an overwhelming majority of the spins feel a random 
field such that Ih,, > 25. These spins are therefore aligned with their random fields, 
and their contribution to E, depends on the distribution of the fields only through 
(1111) = H,, independently of v. As a consequence, the difference between the ground- 

fields such that 1/21 < 25. This concentration of unpinned spins can be evaluated for 
large Y by expanding the probability density (1.2). We thus obtain 

... :-.. ,:, . .~~  .,-. I . .  .L lL1 . r - -  & , ~ ~  ~~~~,:.:.- . c ~ . - I I , I I ~ ~  - r I I ~ ~  ~ ~ ~ ~ . , , C . I ,  ..... ,I. 

F.t,at,e energy and its value in t,he hinary c.aslsp is entire!y due t,o the frac.tion of random 

E, - E0p,inary) - exp b(1 - E  + I n 0 1  ( N  = 1) (6.49) 

with E = 2J/H, ,  according to the definition (6.6). The correction to the ground-state 
energy is therefore exponentially small in U.  When the field strength HB is large, < 
is small, and the correction assumes the form (Fe)", in agreement with the large-H 
result (5.25), after rescaling the field strength H according to equation (1.4). 

In  the converse situation where N 2 2, i.e. H, < 25, the ground-states of the 
binary model cannot be simply described in terms of spins pinned by their local fields. 
This can be realized e.g. by noticing that the zero-point entropy So, given by equation 
(6.20), remains non-trivial in the non-diluted case ( p  = 1). When v i s  large, but finite, 
the degeneracy among the ground-states is partially lifted, yielding a correction to Eo 
of order the width w of the distribution, given by equation (6.47). This argument 
leads us to conjecture the following expression 

Eo - En!hinary) - V'I. p J A  1 ,,, ( N 2 2 )  (6.50) 

where the dimensionless amplitude A can only depend on the ratio H B / J .  As men- 
tioned earlier, we have not succeeded in deriving this dependency from the formalism 
of the exact solution. It seems likely that the amplitude A is discontinuous at  integer 
values of the ratio 2J/H,, in analogy with the zero-point entropy of the binary model. 
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2 J I H a  

Figure 4. Plot of the reducedparmeterh = oo / (v+ l ) ,  whichenters the expression 
of the ground-state energy Eo of the class of 'exactly solvable' models, against the 
ratio 2 J / H e :  full line, exact expression (6 .52 )  in the Y - m limit, extracted from 
the ground-state energy (6.10) of the binary model; dotted lines, outcome of the 
'exact solution', for Y = 10 and Y = 25, determined by solving the linear system (5.3) 
numerically. 

We end up this lengthy section by the following numerical illustration. Figure 4 
shows a plot of the scaled ground-state energy parameter 

a 0  Po = v+l (6.51) 

against the ratio 2 J / H , ,  in the binary model (v = CO, full line), and for two values 
(v = 10 and 25) of the exactly solvable model. The normalization (6.51) is chosen so 
that the intercept reads Po = 1/2 for H i 03, independently of v ,  as can be checked 
from the results of section 5.4. The result concerning the binary model has been 
obtained by comparing equations (5.111) and (6.10), namely 

(6 .52)  

This function exhibits an infinity of damped periodic oscillations below the value 
i. The  results for finite v, obtained by solving numerically the linear system (5.3),  
exhibit a slow convergence to the limit (6.51). We notice, in particular, to the right 
of the fignre, the small-field limits, which can he evaluated from the result (5.12), 
which numerically yields Po FZ 0.447649 for v = 10, and Po FZ 0.447075 for v = 25. 
The form of the first correction to these limits is given by equation (6.48): i t  has 
the observed exponentially damped oscillatory behaviour. Finally, the number of 
appreciably visible oscillations can be estimated to be of order N Y U'/', from the 
crossover between regimes (i) and (ii), discussed earlier in this section. 

7. Discussion 

We have presented an 'exact solution' of the random-field king chain, where the 
magnetic fields have the diluted symmetric power-times-exponential form (1.2), with 
an arbitrary positive integer exponent (v - 1). We have solved the model a t  any 
finite temperature (section 3), in the sense that the integration over the distribution 
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of the random fields has been performed in an exact way. The solution of the problem 
takes the form of coupled linear recursion relations, which can yield numerical values 
of thermodynamical quantities, a t  any finite temperature, with essentially arbitrary 
accuracy. 

We have then analysed in more detail the low-temperature regime (sections 4 and 
5), obtaining in particular exact expressions for the ground-state energy E,, the zero- 
point entropy So, aud the amplitude ro of the specific heat, which exhibits a linear 
law of the form C(T)  % r,T at  low temperature. The whole non-triviality of these 
outcomes consists in the presence of four dimensionless parameters, denoted by a,, 
a l ,  a2 and a3. 

The results of the present analysis generalize to arbitrary values of the integer 
parameter v those obtained in our previous works ([l-3]), which concerned only the 
cases U = 1 and U = 2. With respect to these previous studies, the main complication 
which is met by increasing the integer U consists in the occurrence of the (U-1) complex 
roots wa of the secular equation (4.9), which have prevented us from obtaining our 
final results in fully closed form. 

As a matter of fact, the occurrence of these complex roots can be related to earlier 
works. Derrida and Hilhorst [8] have considered the random-field Ising chain, with 
a generic non-symmetric distribution of the random fields h, ,  in the limit where the 
ferromagnetic coupling J is much larger than the typical random fields. In this regime, 
under the hypothesis ( h )  > 0, these authors predict that the quenched free energy has 
generically an exponentially small singular part, of the form 

(7.1) F % - J - ( / I )  - Ce-4a’J + . . . 

where a* is the (temperature-dependent) real positive root of the equation 

with the definition 

f(a) = (exp(-Zah,)). (7.3) 

a* depends thus in a continuous way on the possible parameters of the distribution of 
the random fields. An analogous continuously varying exponent also shows up in the 
study of the probability distribution of the variable 

2 = 1 + XI + Z1Z2 + 2,z2z3 + ’ ’ ’ (7.4) 

where the I,, are independent random variables, with a common given distribution 
(see [ID], and references therein). 

In the case of the ‘exactly solvable’ power-times-exponential distribution (1.2), the 
function f(a) assumes the following form 

(7.5) 
f ( a ) = v + ;  P [ ( 1 + 2 a H ) - ” + ( l - Z u H ) - ” ]  

2 

so that the non-vanishing roots aa of the equation f(a) = 1 are such that 2a,H = 
&wa, As a consequence, the singular part of equation (7.1) is of a similar nature as 
each of the terms exp(-2w,J/H) which enter our exact results. 
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One of the most appealing features of the class of 'exactly solvable' models stud- 
ied here is the large-v crossover to  the diluted symmetric binary distribution. We 
have studied in detail the low-temperature thermodynamics of this discrete model 
(section 6.1), obtaining exact closed-form expressions for the ground-state energy, the 
zero-temperature entropy, and the amplitude of the specific heat, which falls off ex- 
ponentially a t  low temperature. 

When the integer parameter v goes to infinity, the probability distribution of the 
random fields crosses over from continuous to discrete. This change in the nature 
of the random fields induces interesting crossover phenomena in the low-temperature 
thermodynamics. We have studied this question in detail a t  zero temperature (section 
6 . 2 ) ,  considering the ground-state energy of the model. We have shown how this 
crossover was dominated by the interplay between two scales of magnetic fields, namely 
the width w = HB/v1 lP  of the continuous part of the distribution of the random fields, 
and the width W O  F;: r i ~ / @ J j  of the interval of field strengths over which the zero- 
temperature entropy of the binary model is a constant. 

It turns out that similar crossover phenomena do persist at finite temperature. In 
the v -+ 03 limit, the free energy of the 'exactly solvable' model goes continuously 
to that of the diluted binary model. The same property holds true for the ground- 
state energy E,, but not for the zero-temperature entropy So. This quantity is indeed 
generically larger in the binary model that in the v -+ M limit of the continuous one. 
In particular, So does not vanish in the non-diluted case ( p  = 1) of the binary model, 
for N 3 2. The degeneracies which are responsible for this discontinuous behaviour 
of the entropy a t  zero temperature will also manifest in the low-temperature specific 
heat, for temperatures of order T* - w = H,/v'12. 

Finally, i t  can be speculated that the crossover hetween the linear law of the specific 

law, characteristic of a discrete one, will indeed take place for temperatures of order 
P, and that the specific heat a t  the crossover temperature is comparable to the 
difference in zero-temperature entropies between both models, and thus independent 
of the int,eger v. This argument is confirmed, a t  least in the limit of a small field 
strength H,, by the v1l2 law (6.40) derived for the specific heat amplitude I',. 

!t *;E&!, of cou:s.e, be mos? desk-ble to obtain some mere qu-ntitative informe 
tion about the crossover phenomena to  which we have just alluded, concerning both 
the zer+ and finite-temperature thermodynamics, within the framework of the exact 
solution, although these matters seem to be appallingly complicated. 

I.--+ ..I.----+..-:-+:- -f - n-.rt: I..-.." A:e+Ah,.+;n- -f -9nllnm finlll. +ha avnnnnnt;=l 
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A p p e n d i x .  The H = a? l imi t  

In this appendix, we study the class of 'exactly solvable' random-field Ising chains, 
with the distribution (1.2) of the magnetic fields, in the limit where the field strength 
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H is infinite. The random magnetic fields are thus distributed as follows 

+m with probability p/2 

-CO with probability p / 2 .  
with probability T 

Any dependence in the integer parameter v has disappeared, since every non-zero 
random Eeid is iniiniteiy iarge. Hence the distribution (A.i )  is aiso the ifB = 00 iimit 
of the diluted symmetric binary distribution (1.3). 

This limiting case has already been studied in detail by Grinstein and Mukamel 
[9]. The infinitely large fields have the effect of cutting the chain into an infinity 
of independent finite clusters, so that the  thermodynamics of the problem a t  finite 
temperature can be dealt with by an exact enumeration procedure. 

For the sake of consistency with the body of this article, let us evaluate the free 
energy of the model (A.l) by means of the Riccati variables. To do so, we consider 
the variables Z,, defined in equation (2.10), which obey the recursion relation (2.11). 
The quenched free energy is then given by the expression (2.13). 

Within the present formalism, the peculiarity of the distribution ( A . l )  manifests 
itself by a drastic simplification of the recursion (2,11), namely 

/I" = +w * Z" = - 1  

11, = 0 3 Z" = e-2'2"-, 

h, = -m =$ Z" = I 

which leads us easily to  the following stationary distribution of the variable Z 

(A.3) 
P 
2 

2 = he-'"" with probability -rn (n 2 0) , 

where the parameter p has been defined i n  equation (2.6). 
In order to define properly the free energy of the model (A.I), and along the 

lines of [9], one has to subtract the (temperature-independent) contribution of the 
infinite magnetic fields. In other words, one considers the subtracted free energy 
F' = limHB,,(F - p H , ) ,  where F denotes the free energy of the diluted symmetric 
binary model (1.3). It turns out that the term to be subtracted coincides with the 
divergent contribution of tlie value Z = -1 to the expression (2.13) of the free energy, 
We thus obtain for tlie subtracted free energy F' 

Let us now turn to the low-temperature analysis of this free energy. To do so, we 
expand first tlie generic term of the sum in equation (A.4)  as 

!n( : -e -4m#\  - O N T  I . . IA" . \  %..- 2 P J  I 1 1 ~ 2  , 1\---4PJ , 

By inserting this expansion into equation (A.4) ,  we obtain the following low- 
temperature behaviour of the free energy 

(A.5) , - -*IJ.# T "'(-I,', - Ll 'C  T Z,L<' T ',r T ' " .  

(A.6) PF' = BE' s - Ee-4PJ f . . . 0 -  0 
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These outcomes agree both with the low-temperature analysis of our exact solution 
(sections 4 and 5 ) ,  and with the results concerning the general binary model (section 6). 
In particular, the subtracted ground-state energy EL coincides with the H-independent 
terms in both results ( 5 . 2 5 ) ,  and (6.10) for N = 1. The value of the zero-temperature 
entropy So agrees with the large-H limit of equation (5 .28) ,  and with (6.20) for N = 1. 
As far as the specific heat is concerned, in the language of section 6, we have = 2 J ,  
and the value of the amplitude B is in agreement with equation (6.30). 

The limit distribution ( A . l )  also allows for a detailed study of the striking phe- 
nomenon, already underlined in section 6.1.3, that the specific heat amplitudes B 
given in equations (6.26) and (6.30) blow up in the small-p limit. In other words, the 
p + 0 and T + 0 limits do not commute in the diluted binary model. As a matter of 
fact, the presence of powers of inp in the smali-p behaviour (4.4uj of the quantities sb 
suggest that these limits do not commute either in the case of continuous distributions 
of the random fields. 

I n  heuristic terms, this phenomenon can be understood as follows. At low tem- 
peratures, the correlation length ET = 1 / ( 2 p )  of the piire ferromagnetic Ising chain 
is divergent. When the impurity concentration p is small, there is a second diverging 
length in the problem, namely the mean distance between two impurities, which reads 
.&, - I/p. It can therefore be expected that, when both p and T go to zero, there is 
a continuum limit, where the two lengths have to be compared, and where physical 
quantit,ies keep a non-trivial dependence in the ratio of both diverging lengths, that 
we choose to write in the form 

The occurrence of such a scaling behaviour can be checked explicitly in the case of the 
free energy. Indeed, the expression (A.4) can be recast in an exact fashion as 

with 

In the scaling limit, where both p and ,U go to zero, with a fixed value of the variable 
X, the sum in equation (A.9) can be turned into an integral over the variable t = np, 
whereas the first term is negligible. We are left with the estimate 

PF, zz -;iF(X) Y (A.lO) 
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where the scaling function F reads 

m sinh(tX) 
F ( X )  = 1 dt e-' In 

0 t X  ' 
( A . l l )  

When its argument X is small, or large, the scaling function has the following asymp- 
totic behaviour 

1 2 
3 15 

F ( X )  = -x2 - -x4 + . . . ( X  - 0) 

F ( X )  = X - ln(2X) + yE +. . . (X  +CO). (A.12) 

Notice that the X z  (respectively X)  behaviour a t  small X (respectively large X )  
corresponds to the value 5 = 25 (respectively 5 = J )  of the energy gap of the king 
chain in the presence (respectively in the absence) of strong random fields. The 
scaling law (A.lO) describes the full non-trivial crossover between those two limiting 
situations. 

It turns out that  the same function F(X) has been shown to play a role in the 
scaling analysis of two other disordered systems, namely the study of the electrical 
conductivity of infinite ladder networks [20], and the two-dimensional king model 
with layered randomness 121, 221. It has been shown in particular that the function 
F(X) has an interesting analytic structure, which has been put in perspective with the 
Lifsliitz mechanism. In particular, F(X) is indefinitely differentiable but non-analytic 
a t  X = 0. Moreover, the function F(X) can be related to the Bernouilli numbers 
E, and to the +function, the logarithmic derivative of Euler's r-function. With the 
notations of [20], we have 

F ( X )  = B(2X) = 2 ( 2 X ) ' " '  = -$ (L) 2x - X - ln(2X). 
"'21 

(A.13) 
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